Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Curr Opin Microbiol ; 55: 34-39, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32172083

RESUMO

Since the initial discovery of bacterial nucleotide second messengers (NSMs), we have made huge progress towards understanding these complex signalling networks. Many NSM networks contain dozens of metabolic enzymes and binding targets, whose activity is tightly controlled at every regulatory level. They function as global regulators and in specific signalling circuits, controlling multiple aspects of bacterial behaviour and development. Despite these advances there is much still to discover, with current research focussing on the molecular mechanisms of signalling circuits, the role of the environment in controlling NSM pathways and attempts to understand signalling at the whole cell/community level. Here we examine recent developments in the NSM signalling field and discuss their implications for understanding this important driver of microbial behaviour.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Nucleotídeos Cíclicos/fisiologia , Nucleotídeos/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/fisiologia , Biofilmes , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais
2.
Brain Res Bull ; 151: 84-91, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30721769

RESUMO

Neurodegenerative diseases (ND) are a heterogeneous group of neurological disorders characterized by a progressive loss of neuronal function which results in neuronal death. Although a specific toxic factor has been identified for each ND, all of them share common pathological molecular mechanisms favouring the disease development. In the final stages of ND, patients become unable to take care of themselves and decline to a total functional incapacitation that leads to their death. Some of the main factors which contribute to the disease progression include proteasomal dysfunction, neuroinflammation, synaptic alterations, protein aggregation, and oxidative stress. Over recent years, evidence has been accumulated to suggest that purinergic signaling plays a key role in the aforementioned molecular pathways. In this review, we revise the implications of the purinergic signaling in the common molecular mechanism underlying the ND. In particular, we focus on the role of the purinergic receptors P2X7, P2Y2 and the ectoenzyme tissue-nonspecific alkaline phosphatase (TNAP).


Assuntos
Doenças Neurodegenerativas/metabolismo , Nucleotídeos/metabolismo , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/fisiologia , Animais , Encéfalo/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neurônios/metabolismo , Nucleotídeos/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2Y2/fisiologia , Transdução de Sinais
3.
Leukemia ; 32(5): 1116-1123, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29556022

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) circulate in peripheral blood (PB) under normal conditions and their number increases in response to stress, inflammation, tissue/organ injury, and may increase up to 100-fold after administration of mobilization-inducing drugs. Mounting evidence suggests that mobilizing agent-induced mobilization of HSPCs from bone marrow into PB is a result of innate immunity-mediated sterile inflammation in the bone marrow (BM) microenvironment. A critical initiating role in this process is played by tissue/organ injury-mediated or pharmacologically induced release from bone marrow-residing granulocytes and monocytes of (i) danger-associated molecular patterns (DAMPs), (ii) reactive oxygen species (ROS), and (iii) proteolytic and lipolytic enzymes. All these factors together trigger activation of the complement and coagulation cascades, both of which orchestrate egress of HSPCs into BM sinusoids and lymphatics. Recent evidence also indicates that, in addition to attenuation of the SDF-1-CXCR4 and VLA-4-VCAM-1 retention axes in the BM microenvironment and the presence of a mobilization-directing phosphosphingolipid gradient in PB, an important role in the mobilization process is played by extracellular nucleotides and purinergic signaling. In particular, a new finding by our laboratory is that, while extracellular ATP promotes mobilization of HSPCs, its derivative, adenosine, has the opposite (inhibitory) effect.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Imunidade Inata , Inflamação/imunologia , Animais , Medula Óssea/fisiologia , Humanos , Nucleotídeos/fisiologia , Purinas/farmacologia , Transdução de Sinais
4.
Annu Rev Biophys ; 46: 433-453, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28375734

RESUMO

Understanding how distinct parts of proteins produce coordinated behavior has driven and continues to drive advances in protein science and enzymology. However, despite consensus about the conceptual basis for allostery, the idiosyncratic nature of allosteric mechanisms resists general approaches. Computational methods can identify conformational transition states from structural changes, revealing common switching mechanisms that impose multistate behavior. Thermodynamic cycles use factorial perturbations to measure coupling energies between side chains in molecular switches that mediate shear during domain motion. Such cycles have now been complemented by modular cycles that measure energetic coupling between separable domains. For one model system, energetic coupling between domains has been shown to be quantitatively equivalent to that between dynamic side chains. Linkages between domain motion, switching residues, and catalysis make nucleoside triphosphate hydrolysis conditional on domain movement, confirming an essential yet neglected aspect of free energy transduction and suggesting the potential generality of these studies.


Assuntos
Nucleotídeos/química , Regulação Alostérica , Biocatálise , Hidrólise , Ativação do Canal Iônico , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Mutação , Nucleotídeos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Domínios Proteicos , Termodinâmica , Triptofano-tRNA Ligase/química , Triptofano-tRNA Ligase/genética
5.
Nucleic Acids Res ; 45(6): 3487-3502, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27899632

RESUMO

Yield of protein per translated mRNA may vary by four orders of magnitude. Many studies analyzed the influence of mRNA features on the translation yield. However, a detailed understanding of how mRNA sequence determines its propensity to be translated is still missing. Here, we constructed a set of reporter plasmid libraries encoding CER fluorescent protein preceded by randomized 5΄ untranslated regions (5΄-UTR) and Red fluorescent protein (RFP) used as an internal control. Each library was transformed into Escherchia coli cells, separated by efficiency of CER mRNA translation by a cell sorter and subjected to next generation sequencing. We tested efficiency of translation of the CER gene preceded by each of 48 natural 5΄-UTR sequences and introduced random and designed mutations into natural and artificially selected 5΄-UTRs. Several distinct properties could be ascribed to a group of 5΄-UTRs most efficient in translation. In addition to known ones, several previously unrecognized features that contribute to the translation enhancement were found, such as low proportion of cytidine residues, multiple SD sequences and AG repeats. The latter could be identified as translation enhancer, albeit less efficient than SD sequence in several natural 5΄-UTRs.


Assuntos
Regiões 5' não Traduzidas , Escherichia coli/genética , Biossíntese de Proteínas , Sequências Reguladoras de Ácido Ribonucleico , Separação Celular , Citometria de Fluxo , Genes Reporter , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Conformação de Ácido Nucleico , Nucleotídeos/fisiologia
6.
Purinergic Signal ; 12(1): 25-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26545760

RESUMO

Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.


Assuntos
Trifosfato de Adenosina/fisiologia , Espaço Extracelular/fisiologia , Nucleotídeos/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Celular , Espaço Extracelular/metabolismo , Humanos , Nucleotídeos/metabolismo , Receptores Purinérgicos P2 , Sistemas do Segundo Mensageiro/fisiologia
7.
J Microbiol ; 53(11): 776-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26502962

RESUMO

Acinetobacter baumannii, which is emerging as a multidrug-resistant nosocomial pathogen, causes a number of diseases, including pneumonia, bacteremia, meningitis, and skin infections. With ATP hydrolysis, the D-alanine-D-alanine ligase (DDL) catalyzes the synthesis of D-alanyl-D-alanine, which is an essential component of bacterial peptidoglycan. In this study, we determined the crystal structure of DDL from A. baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric unit contained six protomers of AbDDL. Five protomers had a closed conformation in the central domain, while one protomer had an open conformation in the central domain. The central domain with an open conformation did not interact with crystallographic symmetry-related protomers and the conformational change of the central domain was not due to crystal packing. The central domain of AbDDL can have an ensemble of the open and closed conformations before the binding of substrate ATP. The conformational change of the central domain is important for the catalytic activity and the detail information will be useful for the development of inhibitors against AbDDL and putative antibacterial agents against A. baumannii. The AbDDL structure was compared with that of other DDLs that were in complex with potent inhibitors and the catalytic activity of AbDDL was confirmed using enzyme kinetics assays.


Assuntos
Acinetobacter baumannii/enzimologia , Peptídeo Sintases/química , Acinetobacter baumannii/fisiologia , Biocatálise , Cristalografia por Raios X , Cinética , Nucleotídeos/fisiologia , Peptídeo Sintases/metabolismo , Peptidoglicano/química , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas
8.
Proc Natl Acad Sci U S A ; 112(44): E6038-47, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483489

RESUMO

Five homologous noncoding small RNAs (sRNAs), called the Qrr1-5 sRNAs, function in the Vibrio harveyi quorum-sensing cascade to drive its operation. Qrr1-5 use four different regulatory mechanisms to control the expression of ∼ 20 mRNA targets. Little is known about the roles individual nucleotides play in mRNA target selection, in determining regulatory mechanism, or in defining Qrr potency and dynamics of target regulation. To identify the nucleotides vital for Qrr function, we developed a method we call RSort-Seq that combines saturating mutagenesis, fluorescence-activated cell sorting, high-throughput sequencing, and mutual information theory to explore the role that every nucleotide in Qrr4 plays in regulation of two mRNA targets, luxR and luxO. Companion biochemical assays allowed us to assign specific regulatory functions/underlying molecular mechanisms to each important base. This strategy yielded a regional map of nucleotides in Qrr4 vital for stability, Hfq interaction, stem-loop formation, and base pairing to both luxR and luxO, to luxR only, and to luxO only. In terms of nucleotides critical for sRNA function, the RSort-Seq analysis provided strikingly different results from those predicted by commonly used regulatory RNA-folding algorithms. This approach is applicable to any RNA-RNA interaction, including sRNAs in other bacteria and regulatory RNAs in higher organisms.


Assuntos
Escherichia coli/fisiologia , Nucleotídeos/fisiologia , Percepção de Quorum , RNA não Traduzido/fisiologia , Vibrio/fisiologia , Escherichia coli/genética , Vibrio/genética
9.
Biochem Biophys Res Commun ; 460(3): 813-8, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25824040

RESUMO

The activity of Cav1.2 Ca(2+) channels is maintained in the presence of calmodulin and ATP, even in cell-free patches, and thus a channel ATP-binding site has been suggested. In this study, we examined whether other nucleotides, such as GTP, UTP, CTP, ADP and AMP, could be substituted for ATP in guinea-pig ventricular myocytes. We found that all the nucleotides tested could re-prime the Ca(2+) channels in the presence of 1 µM calmodulin in the inside-out mode. The order of efficacy was ATP > GTP > UTP > ADP > CTP ≈ AMP. Thus, the presumed nucleotide-binding site in the channel seemed to favor a purine rather than pyrimidine base and a triphosphate rather than a di- or mono-phosphate group. Furthermore, a high concentration (10 mM) of GTP, UTP, CTP, ADP and AMP had inhibitory effects on the channel activity. These results provide information on the putative nucleotide-binding site(s) in Cav1.2 Ca(2+) channels.


Assuntos
Canais de Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Músculo Liso Vascular/metabolismo , Nucleotídeos/fisiologia , Animais , Cobaias , Ventrículos do Coração/citologia , Músculo Liso Vascular/citologia
10.
Nat Commun ; 5: 5364, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25395082

RESUMO

Kinesin-1 is a dimeric ATP-dependent motor protein that moves towards microtubules (+) ends. This movement is driven by two conformations (docked and undocked) of the two motor domains carboxy-terminal peptides (named neck linkers), in correlation with the nucleotide bound to each motor domain. Despite extensive data on kinesin-1, the structural connection between its nucleotide cycle and movement has remained elusive, mostly because the structure of the critical tubulin-bound apo-kinesin state was unknown. Here we report the 2.2 Å structure of this complex. From its comparison with detached kinesin-ADP and tubulin-bound kinesin-ATP, we identify three kinesin motor subdomains that move rigidly along the nucleotide cycle. Our data reveal how these subdomains reorient on binding to tubulin and when ATP binds, leading respectively to ADP release and to neck linker docking. These results establish a framework for understanding the transformation of chemical energy into mechanical work by (+) end-directed kinesins.


Assuntos
Cinesinas/metabolismo , Nucleotídeos/metabolismo , Tubulina (Proteína)/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Humanos , Cinesinas/fisiologia , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Simulação de Acoplamento Molecular , Movimento/fisiologia , Nucleotídeos/fisiologia , Estrutura Terciária de Proteína/fisiologia , Tubulina (Proteína)/fisiologia
11.
J. physiol. biochem ; 70(2): 487-496, jun. 2014.
Artigo em Inglês | IBECS | ID: ibc-122969

RESUMO

The aim of this study was to assess whether alfa-tocopherol administration prevented alterations in the ectonucleotidase activities and platelet aggregation induced by high-fat diet in rats. Thus, we examined four groups of male rats which received standard diet, high-fat diet (HFD), α-tocopherol (α-Toc), and high-fat diet plus α-tocopherol. HFD was administered ad libitum and α-Toc by gavage using a dose of 50 mg/kg. After 3 months of treatment, animals were submitted to euthanasia, and blood samples were collected for biochemical assays. Results demonstrate that NTPDase, ectonucleotide pyrophosphatase/phosphodiesterase, and 5'-nucleotidase activities were significantly decreased in platelets of HFD group, while that adenosine deaminase (ADA) activity was significantly increased in this group in comparison to the other groups (P < 0.05). When rats that received HFD were treated with α-Toc, the activities of these enzymes were similar to the control, but ADA activity was significantly increased in relation to the control and α-Toc group (P < 0.05). HFD group showed an increased in platelet aggregation in comparison to the other groups, and treatment with α-Toc significantly reduced platelet aggregation in this group. These findings demonstrated that HFD alters platelet aggregation and purinergic signaling in the platelets and that treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition


No disponible


Assuntos
Animais , Ratos , Proteína Receptora de AMP Cíclico , Nucleotídeos/fisiologia , Agregação Plaquetária , alfa-Tocoferol/farmacocinética , Gorduras na Dieta/metabolismo , Receptores Purinérgicos , Nucleotídeos de Adenina/fisiologia , Modelos Animais de Doenças
12.
J Gastroenterol Hepatol ; 28 Suppl 4: 18-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24251698

RESUMO

The gut is equipped with a unique immune system for maintaining immunological homeostasis, and its functional immune disruption can result in the development of immune diseases such as food allergy and intestinal inflammation. Accumulating evidence has demonstrated that nutritional components play an important role in the regulation of gut immune responses and also in the development of intestinal immune diseases. In this review, we focus on the immunological functions of lipids, vitamins, and nucleotides in the regulation of the intestinal immune system and as potential targets for the control of intestinal immune diseases.


Assuntos
Hipersensibilidade Alimentar/imunologia , Alimentos , Trato Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Lipídeos/fisiologia , Nucleotídeos/fisiologia , Fenômenos Fisiológicos da Nutrição/imunologia , Vitaminas/fisiologia , Trato Gastrointestinal/citologia , Homeostase/imunologia , Humanos , Doenças Inflamatórias Intestinais/prevenção & controle , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados , Esfingosina/fisiologia
13.
J Pharmacol Exp Ther ; 345(3): 331-41, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23504005

RESUMO

The presence and activity of nucleotides and dinucleotides in the physiology of most, if not all, organisms, from bacteria to humans, have been recognized by the scientific community, and the eye is no exception. Nucleotides in the dynamic fluids interact with many ocular structures, such as the tears and aqueous humor. Moreover, high concentrations of nucleotides in these secretions may reflect disease states such as dry eye and glaucoma. Apart from the nucleotide concentration in these fluids, P2 purinergic receptors have been described on the ocular surface (cornea and conjunctiva), anterior pole (ciliary body, trabecular meshwork), and posterior pole (retina). P2X and P2Y purinergic receptors are essential in maintaining the homeostasis of ocular processes, such as tear secretion, aqueous humor production, or retinal modulation. When they are functioning properly, they allow the eye to do its job (to see), but in some cases, a lack or an excess of nucleotides or a malfunction in the corresponding purinergic receptors leads to disease. This Perspective is focused on the nucleotides and dinucleotides and the P2 purinergic receptors in the eye and how they contribute to normal and disease states. We also emphasize the action of nucleotides and their receptors and antagonists as potential therapeutic agents.


Assuntos
Oftalmopatias/tratamento farmacológico , Nucleotídeos/fisiologia , Fenômenos Fisiológicos Oculares , Animais , Humor Aquoso/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Olho/imunologia , Oftalmopatias/metabolismo , Humanos , Nucleotídeos/metabolismo , Nucleosídeos de Purina/metabolismo , Nucleosídeos de Purina/fisiologia , Nucleotídeos de Purina/metabolismo , Nucleotídeos de Purina/fisiologia , Retina/efeitos dos fármacos , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Lágrimas/química , Lágrimas/metabolismo , Cicatrização/efeitos dos fármacos
14.
J Physiol ; 590(20): 5025-36, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802590

RESUMO

The sulphonylurea receptor (SUR1) subunit of the ATP-sensitive potassium (KATP) channel is a member of the ATP-binding cassette (ABC) protein family. Binding of MgADP to nucleotide-binding domain 2 (NBD2) is critical for channel activation.We identified a residue in NBD2 (G1401) that is fully conserved among ABC proteins and whose functional importance is unknown. Homology modelling places G1401 on the outer surface of the protein, distant from the nucleotide-binding site. The ATPase activity of purified SUR1-NBD2-G1410R (bound to maltose-binding protein) was slightly inhibited when compared to the wild-type protein, but its inhibition by MgADP was unchanged, indicating that MgADP binding is not altered. However, MgADP activation of channel activity was abolished. This implies that the G1401R mutation impairs the mechanism by which MgADP binding to NBD2 is translated into opening of the KATP channel pore. The location of G1401 would be consistent with interaction of this residue with the pore-forming Kir6.2 subunit. Channel activity in the presence of MgATP reflects the balance between the stimulatory (at SUR1) and inhibitory (at Kir6.2) effects of nucleotides. Mutant channels were 2.5-fold less sensitive to MgATP inhibition and not activated by MgATP. This suggests that ATP block of the channel is reduced by the SUR1 mutation. Interestingly, this effect was dependent on the functional integrity of the NBDs. These results therefore suggest that SUR1 modulates both nucleotide inhibition and activation of the KATP channel.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Receptores de Droga/química , Receptores de Droga/fisiologia , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Humanos , Técnicas In Vitro , Proteínas Ligantes de Maltose/química , Dados de Sequência Molecular , Mutação , Nucleotídeos/fisiologia , Oócitos/fisiologia , Ratos , Alinhamento de Sequência , Receptores de Sulfonilureias , Xenopus laevis
15.
Purinergic Signal ; 8(3): 359-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22528679

RESUMO

Extracellular nucleotides and nucleosides promote a vast range of physiological responses, via activation of cell surface purinergic receptors. Virtually all tissues and cell types exhibit regulated release of ATP, which, in many cases, is accompanied by the release of uridine nucleotides. Given the relevance of extracellular nucleotide/nucleoside-evoked responses, understanding how ATP and other nucleotides are released from cells is an important physiological question. By facilitating the entry of cytosolic nucleotides into the secretory pathway, recently identified vesicular nucleotide and nucleotide-sugar transporters contribute to the exocytotic release of ATP and UDP-sugars not only from endocrine/exocrine tissues, but also from cell types in which secretory granules have not been biochemically characterized. In addition, plasma membrane connexin hemichannels, pannexin channels, and less-well molecularly defined ATP conducting anion channels have been shown to contribute to the release of ATP (and UTP) under a variety of conditions.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/fisiologia , Nucleotídeos/metabolismo , Nucleotídeos/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Conexinas/metabolismo , Conexinas/fisiologia , Humanos , Receptores Purinérgicos/fisiologia , Canais de Cátion TRPV/fisiologia , Difosfato de Uridina/metabolismo , Difosfato de Uridina/fisiologia
16.
Purinergic Signal ; 8(3): 587-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22528684

RESUMO

The directional movement of cells can be regulated by ATP, certain other nucleotides (e.g., ADP, UTP), and adenosine. Such regulation occurs for cells that are "professional phagocytes" (e.g., neutrophils, macrophages, certain lymphocytes, and microglia) and that undergo directional migration and subsequent phagocytosis. Numerous other cell types (e.g., fibroblasts, endothelial cells, neurons, and keratinocytes) also change motility and migration in response to ATP, other nucleotides, and adenosine. In this article, we review how nucleotides and adenosine modulate chemotaxis and motility and highlight the importance of nucleotide- and adenosine-regulated cell migration in several cell types: neutrophils, microglia, endothelial cells, and cancer cells. We also discuss difficulties in conducting experiments and drawing conclusions regarding the ability of nucleotides and adenosine to modulate the migration of professional and non-professional phagocytes.


Assuntos
Adenosina/fisiologia , Quimiotaxia/fisiologia , Nucleotídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Purinérgicos P1/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Movimento Celular/fisiologia , Quimiotaxia de Leucócito/fisiologia , Humanos , Microglia/fisiologia , Neoplasias/patologia , Neutrófilos/fisiologia
17.
Surg Clin North Am ; 91(3): 579-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21621697

RESUMO

Nutritional support of critically ill or injured patients has undergone significant advances in the last few decades. These advances are the direct result of the growing scientific progress and increased knowledge of the biology and biochemistry of key metabolic and nutrient changes induced by injury, sepsis, and other critical illnesses, both in adults and children. As this knowledge has increased, the science of nutritional support has become more disease based and disorder based. This article discusses protein and nitrogen metabolism in critically ill patients, immunomodulation, and the key nutrients involved in an immune-enhancing diet.


Assuntos
Estado Terminal/terapia , Apoio Nutricional , Ferimentos e Lesões/terapia , Aminoácidos/metabolismo , Arginina/fisiologia , Suplementos Nutricionais , Alimentos Formulados , Glutamina/sangue , Humanos , Imunomodulação , Proteínas Musculares/metabolismo , Nitrogênio/metabolismo , Nucleotídeos/fisiologia , Estresse Oxidativo/fisiologia , Proteínas/metabolismo , Síndrome do Desconforto Respiratório/terapia , Estresse Fisiológico
18.
Biochem Soc Trans ; 39(2): 611-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21428949

RESUMO

Many complex cellular processes in the cell are catalysed at the expense of ATP hydrolysis. The enzymes involved bind and hydrolyse ATP and couple ATP hydrolysis to the catalysed process via cycles of nucleotide-driven conformational changes. In this review, I illustrate how smFRET (single-molecule fluorescence resonance energy transfer) can define the underlying conformational changes that drive ATP-dependent molecular machines. The first example is a DEAD-box helicase that alternates between two different conformations in its catalytic cycle during RNA unwinding, and the second is DNA gyrase, a topoisomerase that undergoes a set of concerted conformational changes during negative supercoiling of DNA.


Assuntos
DNA Super-Helicoidal/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Conformação de Ácido Nucleico , Nucleotídeos/fisiologia , RNA/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/fisiologia , DNA Super-Helicoidal/química , Humanos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Conformação de Ácido Nucleico/efeitos dos fármacos , Nucleotídeos/química , RNA/química
19.
C R Biol ; 334(2): 100-17, 2011 Feb.
Artigo em Inglês, Francês | MEDLINE | ID: mdl-21333941

RESUMO

Nucleosides and nucleotides are now considered as extracellular signalling molecules, like neurotransmitters and hormones. Hepatic cells, amongst other cells, ubiquitously express specific transmembrane receptors that transduce the physiological signals induced by extracellular nucleosides and nucleotides, as well as various cell surface enzymes that regulate the levels of these mediators in the extracellular medium. Here, we cover various aspects of the signalling pathways initiated by extracellular nucleosides and nucleotides in the liver, and discuss their overall impact on hepatic physiology.


Assuntos
Fígado/fisiologia , Proteínas de Membrana/fisiologia , Nucleosídeos/fisiologia , Nucleotídeos/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Líquido Extracelular/fisiologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia
20.
J Mol Recognit ; 23(6): 505-18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21038352

RESUMO

In this review, the protein-DNA interactions are discussed considering different perspectives, and the biological occurrence of this interaction is explained at atomic level. The evaluation of the amino acid-nucleotide recognition has been investigated analysing datasets for predicting the association preferences and the geometry that favours the interaction. Based on this knowledge, an affinity chromatographic method was developed also exploiting this biological favoured contact. In fact, the implementation of this technique brings the possibility to apply the concept of molecular interactions to the development of new purification methodologies. In addition, the integration of the information recovered by all the different perspectives can bring new insights about some biological mechanisms, though not totally clarified.


Assuntos
Aminoácidos/metabolismo , Células/metabolismo , Cromatografia de Afinidade/métodos , Substâncias Macromoleculares/química , Nucleotídeos/metabolismo , Aminoácidos/química , Aminoácidos/fisiologia , Animais , Células/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Histonas/metabolismo , Humanos , Substâncias Macromoleculares/isolamento & purificação , Substâncias Macromoleculares/metabolismo , Modelos Biológicos , Nucleotídeos/química , Nucleotídeos/fisiologia , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...